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The human race has developed many different writing systems, based on several 
categories of graphemes (atomic symbols). To vastly over-simplify, we have

Alphabets:  A set of  < 100 symbols, each roughly corresponding to a speech sound:

            Example:    English:   a b c …. z               Greek:  𝛼	𝛽	𝛾	𝛿 … 	𝜔
            
Syllabaries: A set of 100s of symbols, each roughly corresponding to spoken syllable:

                 Linear B (early Greek): pa-te =  𝜋𝛼𝜏𝜂𝜌  = pater = ”father”
                 
                 Japanese:
             
Logographies: A set of 1000s of symbols, each roughly corresponding to a spoken 
word or concept:  

                  Egyptian Hieroglyphs:  

                 Chinese:         mountain.         knife           down  

Basic Notions: Characters, Words, Tokens, Documents, Corpora

What about 
Emojis?



Basic Notions: Characters, Words, Tokens, Documents, Corpora

For NLP, we want to process text as a sequence of atomic symbols and these 
may be any of the preceeding categories.

Thus:  In NLP, textual data is presented in its most basic form as a sequence 
of atomic symbols from some finite collection (think Unicode!). 

In CS 505, our language is English, and this collection will be ASCII 
characters, and we will generally just call them characters. Thus, in its most 
basic form, a text is simply one long string. 

Caveat:  We may find it useful if we analyze social media texts to consider 
Emojis (which are given Unicode numbers!).  



This string form of a text is the minimal representation of the information 
content of the text (excluding formatting, diagrams, different fonts, illustrations, 
etc.) and may include some minimal formatting (white space, \n, \t, etc.):

Reference: https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html

"CHAPTER I\nThe Period\nIt was the best of 
times, it was the worst of times, it was 
the age of wisdom, it was the age of 
foolishness, it was the epoch of belief, it 
was the epoch of incredulity, it was the 
season of Light, it was the season of 
Darkness, it was the spring of hope, it was 
the winter of despair, we had everything 
before us, we had nothing before us, we 
were all going direct to Heaven, we were 
all going direct the other way—in short, 
the period was so far like the present 
period, that some of its noisiest 
authorities insisted on its being received, 
for good or for evil, in the superlative 
degree of comparison only.\nThere were a 
king with a large jaw and a queen with a 
plain face, on the throne of England; there 
were a king with a large jaw and a queen 
with a fair face, on the throne of France. 
In both countries it was clearer than 
crystal to the lords of the State preserves 
of loaves and fishes, that things in 
general were settled for ever.   ..... "

A Tale of Two Cities, Charles Dickens

Basic Notions: Characters, Words, Tokens, Documents, Corpora



Although we will have occasion to use the string form when we study character-level 
machine learning models, almost all NLP uses data which has been grouped into larger 
units:

Words:  Sequence of characters, separated by 
white space or punctuation;

Tokens: Words possibly preprocessed into 
some more useful form (the rest of this lecture);

Sentences:  Sequences of words/tokens

Paragraphs: Sequences of sentences

Chapters/Sections/Topics: Sequences 
       of paragraphs

Document: Sequence of paragraphs

Corpus:  Set of documents

Brown Corpus:

Basic Notions: Characters, Words, Tokens, Documents, Corpora

Optional



Corpora for Natural Language Processing

There are many publicly-available corpora for NLP, often categorized (and preprocessed) for 
specific tasks, in various languages, etc. Dr Google will help you find these….



Why do we need to learn low-level text processing?

Because these corpora are for education, contests, creating general 
language models (e.g., chatGPT), etc. Most NLP projects involve taking 
some raw textual data and wrangling it into a corpus of your own. 

 

Organizing
and Cleaning

At the same time.....

Textual Data Preparation



ML Algorithms are growing exponentially!

Organizing
and Cleaning

Basic rule:  The more parameters, the more data you need...    AND...

Textual Data Preparation

GPT-4:  1.76 trillion parameters!

Log Scale



The amount of available data 
is growing exponentially, 
and it is mostly unstructured.
It is simply impossible to process
this tsunami of data by (human)
hand! 

Textual Data Preparation



“...consider an experiment done by Microsoft in 
2001. Researchers ran a side-by-side test to 
evaluate the merits of 4 of different approaches 
to ML translation. They trained each model 
from scratch with the same input data, running 
a series of trials with varying data set sizes 
from 100k to 1 billion words.”

”... simple models and a lot of data trump more 
elaborate models based on less data.....”

Textual Data Preparation

Plus, data is the most important resource – progress in NLP is overwhelmingly 
dependent on the amount of data, NOT refinements to the algorithms. 

 



§ Every NLP task 

Textual Data Preparation

Most textual data preparation will follow some part of this flowchart:

Physical text

Scraping

Text file

Audio signal

Speech-to-text

De-noising and 
cleaning

Scanning

E-document(s)

Sequence of charactersWeb page(s)

OCR

Format conversion

Sequence of words

Tokenizing

Normalizing word formats:  
Stemming and Lemmatization 

Sequence of  tokens/words

Segmenting into 
sentences, 
paragraphs, etc. 



Tokenizing: Separating a string into words
Example



Tokenizing: Separating a string into words

First try:  separate on white space



Tokenizing: Separating a string into words

First try:  separate on white space



Tokenizing: Separating a string into words

Second try:  separate on white space and punctuation:



Tokenizing: Separating a string into words

Third try:  separate on anything other than a word character



But it gets worse!

o Can't just blindly remove punctuation or non-word characters:
• m.p.h., Ph.D., AT&T, cap’n
• prices ($45.55)
• dates (01/02/06)
• URLs (http://www.stanford.edu)
• hashtags (#nlproc)
• email addresses (someone@cs.colorado.edu)

o Clitic: a word that doesn't stand on its own
• "are" in we're, French "je" in j'ai, "le" in l'honneur

o When should multiword expressions (MWE) be words?
• New York, rock ’n’ roll 

Tokenizing: Separating a string into words



Chinese 
       莎拉波娃现在居住在美国东南部的佛罗里达。
莎拉波娃  现在   居住  在    美国   东南部     的    佛罗里达
Sharapova now     lives in       US       southeastern     Florida

Classical Sanskrit

Latin Inscriptions:

Tokenizing: Separating a string into words

Even worse, many languages do not use consistently use spaces or 
punctuation to separate words, and the tokenization is quite 
complicated!



Tokenizing: Separating a string into words

In the case of English and many western languages, there 
are a variety of useful approaches:

o Rule-based methods, perhaps with list of exceptions

o Sequence-to-Sequence methods:

• Hidden Markov Models;

• Neural Networks



Example:  Tokenization in the Natural Language Toolkit (NLTK) uses 
rules based on regular expressions.
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Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

Tokenizing: Separating a string into words



Example:  SpaCy uses a multi-phase 
approach based on rules and exceptions:

Tokenizing: Separating a string into words



Word Normalization; Stemming and Lemmatization

Normalization is putting words into a standard format

Simple:   Make text case-insensitive by converting all to lower case

More complex:

o Misspellings:       “ In tge beginning…. “

o Abbreviations:

           PHD    PhD    Ph.D         Ph.D.

           etc.     &c

           US       U.S.      U.S.A.

o Hyphenation:

           lowercase      lower-case

o Miscellaneous:

            uhhuh    uh-huh



Word Normalization; Stemming and Lemmatization

Stemming:  Remove suffixes

   likes, liked, likely, liking, likable          Stem:  like

Naïve method:   Chop off last part of work (based on list of cases)!

This was not the map we found in Billy 
Bones’s chest, but an accurate copy, 
complete in all things-names and 
heights and soundings-with the single 
exception of the red crosses and the 
written notes. 

Thi wa not the map we found in Billi 
Bone s chest but an accur copi 
complet in all thing name and height 
and sound with the singl except of the 
red cross and the written note 
. 



Word Normalization; Stemming and Lemmatization

Stemming:  Remove suffixes

   likes, liked, likely, liking, likable          Stem:  like

Better:  Multi-phase rule-based systems such as the Porter Stemmer 
(available in NLTK):
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be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem
pheme of the word, supplying the main meaning— and affixes—adding “additional”affix
meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade
which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational ! relate)
ING ! ✏ if stem contains vowel (e.g., motoring ! motor)

SSES ! SS (e.g., grasses ! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity



§ am, are, is ® be
§ car, cars, car's, cars' ® car

§ Spanish quiero (‘I want’), quieres (‘you want’) 
® querer ‘want'

§ He is reading detective stories 
® He be read detective story 

Word Normalization; Stemming and Lemmatization

Lemmatization: Represent all words by their lemma, the 
shared root word (dictionary headword):



Sentence Segmentation

!, ? Are mostly unambiguous but period “.” is very ambiguous

§ Usually ”.” is a sentence boundary.  Especially followed by capital letter. But:

§ Abbreviations like Inc. or Dr. Snyder

§ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a) 

part of the word or (b) a sentence-boundary. Capitalization can help too!

Sentence segmentation can then often be done by rules based on this tokenization.

Segmenting into sentences is based on punctuation. 


