CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 3: Basic Notions and Low-Level Text Normalization

Basic Notions: Characters, Words, Tokens, Documents, Corpora

The human race has developed many different writing systems, based on several
categories of graphemes (atomic symbols). To vastly over-simplify, we have

Alphabets: A set of <100 symbols, each roughly corresponding to a speech sound:
Example: English: abc....z Greek: afyé..w
Syllabaries: A set of 100s of symbols, each roughly corresponding to spoken syllable:
Linear B (early Greek): ¥ z pa-te = mathp = pater = "father’
Japanese: =7\, saka, "hill"

Logographies: A set of 1000s of symbols, each roughly corresponding to a spoken
word or concept:

o N n What about
Egyptian Hieroglyphs: il o L Emojis?

shelter
POLBOOY

Chinese: ||| -mountain. 7] knife [down 8VOOVOYE
O EGVOOW

VOPLLER

Basic Notions: Characters, Words, Tokens, Documents, Corpora

For NLP, we want to process text as a sequence of atomic symbols and these
may be any of the preceeding categories.

Thus: In NLP, textual data is presented in its most basic form as a sequence
of atomic symbols from some finite collection (think Unicode!).

In CS 505, our language is English, and this collection will be ASCI|I
characters, and we will generally just call them characters. Thus, in its most
basic form, a text is simply one long string.

040
041
042
043
044
o045
046
047

52

uuuuu
zzzzz
77777

gz char
= @
b 65 a1 101 A
o 66 42 102 8
= 67 a3 103 c
68 44 104 D
o 69 45 105 E
- 70 a6 106 F
xow T 71 a7 107 G
e T -5 T T 72 48 110 b
60 07 < 92 5¢ 134 \ 124 7c 174 |

7 177 DEL
o alpharithas .com

Caveat: We may find it useful if we analyze social media texts to consider

Emojis (which are given Unicode numbers!).
@

Basic Notions: Characters, Words, Tokens, Documents, Corpora

This string form of a text is the minimal representation of the information
content of the text (excluding formatting, diagrams, different fonts, illustrations,
etc.) and may include some minimal formatting (white space, \n, \t, etc.):

A Tale of Two Cities, Charles Dickens

CHAPTER I
THE PERIOD

T was the best of times, it was the worst of times, it
was the age of wisdom, it was the age of foolishness, it
was the epoch of belief, it was the epoch of incredulity,
it was the season of light, it was the season of darkness,
it was the spring of hope, it was the winter of despair,
we had everything before us, we had nothing before us,
we were all going direct to Heaven, we were all going
direct the other way—in short, the period was so far like
the present period, that some of its noisiest authorities
insisted on its being received, for good or for evil, in the
superlative degree of comparison only.

There were a king with a large jaw and a queen with a
plain face, on the throne of England; there were a king
with a large jaw and a queen with a fair face, on the
throne of France. In both countries it was clearer than
crystal to the lords of the State preserves of loaves and
fishes, that things in general were settled for ever.

It was the year of Our Lord one thousand seven hun-
dred and seventy-five. Spiritual revelations were con-
ceded to England at that favoured period, as at this.
Mrs. Southcott had recently attained her five-and-twen-
tieth blessed birthday, of whom a prophetic private in
the Life Guards had heralded the sublime appearance by
wlmdng that arrangements were made for the swallow-
ndon and Westminster. ~Even the Cock-lane
laid only a round dozen of years, after
3

"CHAPTER I\nThe Period\nIt was the best of
times, it was the worst of times, it was
the age of wisdom, 1t was the age of
foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the
season of Light, it was the season of
Darkness, it was the spring of hope, it was
the winter of despair, we had everything
before wus, we had nothing before us, we
were all going direct to Heaven, we were
all going direct the other way—in short,
the period was so far 1like the present
period, that some of its noisiest
authorities insisted on its being received,
for good or for evil, 1in the superlative
degree of comparison only.\nThere were a
king with a large jaw and a qgqueen with a
plain face, on the throne of England; there
were a king with a large jaw and a queen
with a fair face, on the throne of France.
In both countries it was clearer than
crystal to the lords of the State preserves
of loaves and fishes, that things in
general were settled for ever. "

Basic Notions: Characters, Words, Tokens, Documents, Corpora

Although we will have occasion to use the string form when we study character-level
machine learning models, almost all NLP uses data which has been grouped into larger

units:

Words: Sequence of characters, separated by

white space or punctuation;

Tokens: Words possibly preprocessed into
some more useful form (the rest of this lecture);

Sentences: Sequences of words/tokens
Paragraphs: Sequences of sentences

Chapters/Sections/Topics: Sequences
of paragraphs

Document: Sequence of paragraphs

Corpus: Set of documents

Brown Corpus:

String form (a list of characters):

"The Fulton County Grand Jury said Friday an investigation of Atlanta
Words (a list of strings):

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

Sentences (a list of lists of strings):

[['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', 'Friday', 'an',
'primary', 'election', 'produced', '"°', 'no', 'evidence', "''", 'tha
'.'"1, ['The', 'jury', 'further', 'said', 'in', 'term-end', 'presentme
ttee', ',', 'which', 'had', 'over-all', 'charge', 'of', 'the', 'elect
nd', 'thanks', 'of', 'the', 'City', 'of', 'Atlanta', "''", 'for', 'th
'was', 'conducted', '.'], ...]

Paragraphs (a list of lists of lists of strings):

[[['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', 'Friday', 'an'
'primary', 'election', 'produced', '""', 'no', 'evidence', "''", 'tha
'."11, [['The', 'jury', 'further', 'said', 'in', 'term-end', 'present
mittee', ',', 'which', 'had', 'over-all', 'charge', 'of', 'the', ‘'ele
'‘and', 'thanks', 'of', 'the', 'City', 'of', 'Atlanta', "''", 'for', '
n', 'was', 'conducted', '.'1], ...]

ID File Genre Description
Al6 calé news Chicago Tribune: Society Reportage
B02 cb02 editorial Christian Science Monitor: Editorials
Cl17 cc17 reviews Time Magazine: Reviews
D12 cdi12 religion Underwood: Probing the Ethics of Realtors
E36 ce36 hobbies Norling: Renting a Car in Europe
F25 cf25 lore Boroff: Jewish Teenage Culture
G22 cg22 belles_lettres Reiner: Coping with Runaway Technology
H15 chi5 government US Office of Civil and Defence Mobilization: The Family Fallout Shelter
J17 e319 learned Mosteller: Probability with Statistical Applications
K04 cko4 fiction W.E.B. Du Bois: Worlds of Color
L13 113 mystery Hitchens: Footsteps in the Night
MO1 cmol science_fiction Heinlein: Stranger in a Strange Land
N14 cnl5 adventure Field: Rattlesnake Ridge
P12 cpl2 romance Callaghan: A Passion in Rome

R0O6 cro6 humor Thurber: The Future, If Any, of Comedy

Corpora for Natural Language Processing

There are many publicly-available corpora for NLP, often categorized (and preprocessed) for
specific tasks, in various languages, etc. Dr Google will help you find these....

NLTK p

1.3 Brown Corpus

1.1 Gutenberg Corpus

NLTK includes a small selection of texts from the Project Gutenberg electronic text archive, which cont

e file identifiers in this corpus:

| ', 'bible-kjv.txt'|
‘| The Bl 14 Reuters Corpus N
u glV .txt’',
The R|
Table | docun| 1.5 Inaugural Address Corpus
= In1, wd R
address] 1.7 Corpora in Other Languages
>y NLTK comes with corpora for many languages, though in some cases you wil|
>3
I [>>> nltk.corpus.cess_esp.words ()
['El', 'grupo', 'estatal', 'Electricit\xe9_de_ France', ...]
= >>> nltk.corpus.floresta.words ()
['Um', 'revivalismo', 'refrescante', 'O', '7_e_Meio', ...]
>>> nltk.corpus.indian.words('hindi.pos')
et cwfdEy, cgesdt, a0, W, CEgE, ...
= H : Q Search
L
=~ Create
) Datasets
ome

> H & ©®

~. Hugging Face

@

Text Generation @

bookcorpus T O like

Fill-Mask language-modeling

no-annotation original 2105.05241

masked-language-modelin

The Data v Resources v

Qs

Common Crawl

Enron Corpus

Article Talk

Mmaintains a freg
repository of w
datathatcanig

From Wikipedia, the free encyclopedia

The Enron Corpus is a database of over 600,000 emails
in the years leading up to the company's collapse in Decel

Al Training Datasets : TEXT

1 contents

the OpenAl GPT-3 model has been fairly well documented as having been
trained on about 45 TB (terabytes. 1 TB = 1,000 GB, or gigabytes) of pure text
data from multiple Al training datasets which include the entirety of our beloved
Wikipedia (well, the English-language portion, at least), and books... lots of books
(but not, perhaps, the timeless classics that you'd think would be required
reading for the training of a genius).

The outline of the primary datasets used to train the model are shown below:

DATASET RAW SIZE WEIGHT COMPOSITIONAMPLIFICATION

(tokens, ~words, in training mix (actual % of total (or Suppression)
billions) content mass)

CommonCraw! 410B 60% 82% -0.27

WebText2 19B 20% 4% +5.00

Books1&

Books2 67B 15% 13% +0.15

Wikipedia 3billion 5% 1% +5.00

TOTAL 500B tokens

bmmission (F!
i for $10,000
d this

nd computer-

Textual Data Preparation

Why do we need to learn low-level text processing?

Because these corpora are for education, contests, creating general
language models (e.g., chatGPT), etc. Most NLP projects involve taking
some raw textual data and wrangling it into a corpus of your own.

CrowdFlower, provider of a “data enrichment” platform for data scientists, conducted a survey of about 80 data
scientists and found that data scientists spend —

* 60% of the time in organizing and cleaning data. Time Spent on Tasks in DS Projects
* 19% of the time is spent in collecting datasets.

* 9% of the time is spent in mining the data to draw patterns.
* 3% of the time is spent in training the datasets.

* 4% of the time is spent in refining the algorithms.

* 5% of the time is spent in other tasks.

Organizing
and Cleaning

At the same time.....

Textual Data Preparation

ML Algorithms are growing exponentially!

GPT-4: 1.76 trillion parameters!

A i /

GPT-3 (1758B)
)
% 00 Megatron-Turing NLG (530B)
Log Scale =

g Megatron-LM (8.3B) . T —
“— uring-NLG (17.
o
@ 10
ke T5 (11B)
3
£
v 1 GPT-2 (1.5B)
)
]
3
s BERT-Large (340M)

0.1

v ELMo (94M)
0.01
2018 2019 2020 2021 2022

Basic rule: The more parameters, the more data you need... AND...

Textual Data Preparation

The amount of available data

IS growing exponentially,

and it is mostly unstructured.
It is simply impossible to process
this tsunami of data by (human)

hand! B
S| |

Data growth

Driven by unstructured data
Storage
opbions
Dot
Achwe

125 Exabytes of enterprise data was stored in 2017; 80% was unstructured data. (Source: Credit Suisse)

10°
108
10°
1012
10%
1018
1021
102

Annual Size of the Global Datasphere

175ZB

Examples of Data Volumes

Unit | Value Example
Kilobytes (KB) \ 1,000 bytes a paragraph of a text document
[Megabytes (MB)|[1.000 Kilobytes |[a small novel

[Gigabytes (GB) |[1.000 Megabytes|[Beethoven’s 5th Symphony

[Terabytes (TB) |

1,000 Gigabytes |[all the X-rays in a large hospital

[Petabytes (PB) |

1,000 Terabytes ||half the of all US demi h libraries

Exabytes (EB) |

1,000 Petabytes ||about one fifth of the words people have ever spoken

[Zettabytes (ZB) |

1,000 Exabytes ||as much information as there are grains of sand on all the world’s beaches|

[Yottabytes (YB) |[1.000 Zettabytes |[as much information as there are atoms in 7.000 human bodies

|
|
|
|
|
|
|
\
|

Textual Data Preparation

Plus, data is the most important resource — progress in NLP is overwhelmingly
dependent on the amount of data, NOT refinements to the algorithms.

EXPERT OPINION 1.00 4

§ The Unreasonable 0.95 J
1 Effectiveness of Data

Halevy, Peter Norvig, and Fernando Pereira, Google

“...consider an experiment done by Microsoft in

Test Accuracy
o

.85 4
2001. Researchers ran a side-by-side test to
evaluate the merits of 4 of different approaches
to ML translation. They trained each model 0.80 -
from scratch with the same input data, running) P P
a series of trials with varying data set sizes R
from 100k to 1 billion words.” S G A SUDE)
—a—Naive Bayes
0.70 v T T J
”... simple models and a lot of data trump more 0.1 1 10 100 1000

» Millions of Words

elaborate models based on less data.....

Textual Data Preparation

Most textual data preparation will follow some part of this flowchart:

Scanning

|

Physical text

Format conversion

[

E-document(s) Tex fe

De-noising and
cleaning

Scraping

Tokenizing

Speech-to-text

Audio signal

g Segmenting into
’ sentences,
/) paragraphs, etc.

Sequence of tokens/words

Normalizing word formats:
Stemming and Lemmatization

Sequence of characters

Web page(s)

Sequence of words

Tokenizing: Separating a string into words

ety
Example i

@ Donation PayPal

\ In our time by Ernest Hemingway

Read now or download (free!)
Format @

Read this book online: HTML5

Read this book online: HTML (as submitted)
EPUB3 (E-readers incl. Send-to-Kindle)
EPUB (older E-readers).

EPUB (no images, older E-readers),

Kindle

older Kindles

L NE “HE THE “BE HE R SRR

Plain Text UTF-8

in our time

chapter 1

Everybody was drunk. The whole battery was drunk going along the road
in the dark. We were going to the Champagne. The lieutenant kept
riding his horse out into the fields and saying to him, “I’m drunk, I
tell you, mon vieux. Oh, I am so soused.” We went along the road all
night in the dark and the adjutant kept riding up alongside my
kitchen and saying, “You must put it out. It is dangerous. It will be
observed.” We were fifty kilometers from the front but the adjutant
worried about the fire in my kitchen. It was funny going along that
road. That was when I was a kitchen corporal.

Tokenizing: Separating a string into words

First try: separate on white space

in our time

chapter 1

Everybody was drunk. The whole battery was drunk going along the road
in the dark. We were going to the Champagne. The lieutenant kept
riding his horse out into the fields and saying to him, “I’'m drunk, I
tell you, mon vieux. Oh, I am so soused.” We went along the road all
night in the dark and the adjutant kept riding up alongside my
kitchen and saying, “You must put it out. It is dangerous. It will be
observed.” We were fifty kilometers from the front but the adjutant
worried about the fire in my kitchen. It was funny going along that
road. That was when I was a kitchen corporal.

import re

3 separator_ 1 = '\s+' # one or more white space characters

print(re.split(separator_1,text), '\n")

'in', 'our', 'time', 'chapter', 'l', 'Everybody', 'was', 'drunk.', 'The', 'whole', 'battery', 'was', 'drunk', 'goin
', 'along', 'the', 'road', 'in', 'the', 'dark.', 'We', 'were', 'going', 'to', 'the', 'Champagne.', 'The', 'lieutenan
', 'kept', 'riding', 'his', 'horse', 'out', 'into', 'the', 'fields', 'and', 'saying', 'to', 'him,', '“I'm', 'drun
'y 'IT', 'tell', 'you,', 'mon', 'vieux.', 'Oh,', 'I', 'am', 'so', 'soused.”', 'We', 'went', 'along', 'the', 'road',
all', 'night', 'in', 'the', 'dark', 'and', 'the', 'adjutant', 'kept', 'riding', 'up', 'alongside', 'my', 'kitchen',
'‘and', 'saying,', '“You', 'must', 'put', 'it', 'out.', 'It', 'is', 'dangerous.', 'It', 'will', 'be', 'observed.”', 'W
e', 'were', 'fifty', 'kilometers', 'from', 'the', 'front', 'but', 'the', 'adjutant', 'worried', 'about', 'the', 'fir
e', 'in', 'my', 'kitchen.', 'It', 'was', 'funny', 'going', 'along', 'that', 'road.', 'That', 'was', 'when', 'I', 'wa
s', 'a', 'kitchen', 'corporal.']

-& @ —

Tokenizing: Separating a string into words

First try: separate on white space

in our time

chapter 1

Everybody was drunk. The whole battery was drunk going along the road
in the dark. We were going to the Champagne. The lieutenant kept
riding his horse out into the fields and saying to him, “I’'m drunk, I
tell you, mon vieux. Oh, I am so soused.” We went along the road all
night in the dark and the adjutant kept riding up alongside my
kitchen and saying, “You must put it out. It is dangerous. It will be
observed.” We were fifty kilometers from the front but the adjutant
worried about the fire in my kitchen. It was funny going along that
road. That was when I was a kitchen corporal.

import re

3 separator_ 1 = '\s+' # one or more white space characters
4

print(re.split(separator_1,text), '\n")

['in', 'our', 'time', 'chapter', 'l', 'Everybody', 'was' 'The', 'whole', 'battery', 'was', 'drunk', 'goin
', 'along', 'the', 'road', 'in', 'the', 'dark.', 'We', sfoing', 'to', 'the', 'Champagne.', 'The', 'lieutenan
t', 'riding', 'his', 'horse', 'out', 'into', 'the', 'fields', 'and', 'saying', 'to', 'him,', '“I'm', 'drun
, 'tell', 'you,', 'mon', 'vieux.', 'Oh,', 'I', 'am', 'so', 'soused.”', 'We', 'went', 'along', 'the', 'road',
'night', 'in', 'the', 'dark', 'and', 'the', 'adjutant', 'kept', 'riding', 'up', 'alongside', 'my', 'kitchen',
and', 'saying,', '“You', 'must', 'put', 'it', 'out.', 'It', 'is', 'dangerous.', 'It', 'will', 'be', 'observed.”', 'W
e', 'were', 'fifty', 'kilometers', 'from', 'the', 'front', 'but', 'the', 'adjutant', 'worried', 'about', 'the', 'fir
e', 'in', 'my', 'kitchen.', 'It', 'was', 'funny', 'going', 'along', 'that', 'road.', 'That', 'was', 'when', 'I', 'wa
s', 'a', 'kitchen', 'corporal.']

Tokenizing: Separating a string into words

Second try: separate on white space and punctuation:

in our time

chapter 1

Everybody was drunk. The whole battery was drunk going along the road
in the dark. We were going to the Champagne. The lieutenant kept
riding his horse out into the fields and saying to him, “I’'m drunk, I
tell you, mon vieux. Oh, I am so soused.” We went along the road all
night in the dark and the adjutant kept riding up alongside my
kitchen and saying, “You must put it out. It is dangerous. It will be
observed.” We were fifty kilometers from the front but the adjutant
worried about the fire in my kitchen. It was funny going along that
road. That was when I was a kitchen corporal.

separator 2 = '[\s,;:.!?2]+' # one or more white space or punctuation characters

print(re.split(separator_2,text),'\n")

['in', 'our', 'time', 'chapter', 'l', 'Everybody', 'was', 'drunk', 'The', 'whole', 'battery', 'was', 'drunk', 'goin
g', 'along', 'the', 'road', 'in', 'the', 'dark', 'We', 'were', 'going', 'to', 'the', 'Champagne'’, ieutenan
t', 'kept', 'riding', 'his', 'horse', 'out', 'into', 'the', 'fields', 'and', 'saying', 'to', 'hi drunk'
'T', 'tell', 'you', 'mon', 'vieux', 'Oh', 'I', 'am', 'so', 'soused', '"', 'We', 'went', 'along', d', 'al

', 'night', 'in', 'the', 'dark', 'and', 'the', 'adjutant', 'kept', 'riding', 'up', 'alongside', 'my ', itchen', '

1,

d', 'saying', '“You', 'must', 'put', 'it', 'out', 'It', 'is', 'dangerous', 'It', 'will', 'be', 'observed', '"', 'We',
'were', 'fifty', 'kilometers', 'from', 'the', 'front', 'but', 'the', 'adjutant', 'worried', 'about', 'the', 'fire',
'in', 'my', 'kitchen', 'It', 'was', 'funny', 'going', 'along', 'that', 'road', 'That', 'was', 'when', 'I', 'was',
'a', 'kitchen', 'corporal', '']

Tokenizing: Separating a string into words

Thi

separator_3

3 print(re.spl

['in', 'our', 'time', 'chapter', 'l', 'Everybody', 'was', 'drunk', 'The', 'whole',
g', 'along', 'the', 'road', 'in', 'the', ‘'dark’,
', 'kept', 'riding', 'his', 'horse’,

t

k', 'IT', 'tell’,
'night', 'in', '
'saying', 'You',

ird try: separate on anything other than a word character

in our time

chapter 1

Everybody was drunk. The whole battery was drunk going along the road
in the dark. We were going to the Champagne. The lieutenant kept
riding his horse out into the fields and saying to him, “I’'m drunk, I
tell you, mon vieux. Oh, I am so soused.” We went along the road all
night in the dark and the adjutant kept riding up alongside my
kitchen and saying, “You must put it out. It is dangerous. It will be
observed.” We were fifty kilometers from the front but the adjutant
worried about the fire in my kitchen. It was funny going along that
road. That was when I was a kitchen corporal.

= "\w+' # one or more non-word characters

it (separator_3,text),'\n')

'battery', 'was', 'drunk',

'We', 'were', 'going', 'to', 'the', 'Champagne',6 _A S

out 'into', 'the', 'fields', 'and', 'saying', 'to', 'him{,
‘you', 'mon', 'vieux', 'Oh', 'I', 'am', 'so', 'soused', 'We', 'went', 'along', 'tW

the', 'dark', 'and', 'the', 'adjutant', 'kept', 'riding', 'up', 'alongside', 'my’, , 'and',
'must', 'put', 'it', 'out', 'It', 'is', 'dangerous', 'It', 'will', 'be', 'observed', 'We', 'were',

< 'from', 'the', 'front', 'but', 'the', 'adjutant', 'worried', 'about', 'the', 'fire', 'in',

', 'funny', 'going', 'along', 'that', 'road', 'That', 'was', 'when', 'I', 'was', '

a', 'kitch

Tokenizing: Separating a string into words

But it gets worse!

o Can't just blindly remove punctuation or non-word characters:
« m.p.h.,, Ph.D., AT&T, cap’n
« prices ($45.55)
» dates (01/02/06)
» URLs (http://www.stanford.edu)
» hashtags (#nlproc)
« email addresses (someone@cs.colorado.edu)
o Clitic: a word that doesn't stand on its own
« "are"inwe're, French "je" in j'ai, "le" in I'nonneur
o When should multiword expressions (MWE) be words?
 New York, rock 'n’ roll

Tokenizing: Separating a string into words

Even worse, many languages do not use consistently use spaces or
punctuation to separate words, and the tokenization is quite
complicated!

Chinese
HRENEREEEZEREINES Bik.
WHORME DIE BE £ =B FEI B #FEIE

Sharapova now lives in US southeastern Florida

Classical Sanskrit
= . ¢
q2Idl GUSYATITHTEE HE <A |

Latin Inscriptions:

Tokenizing: Separating a string into words

In the case of English and many western languages, there
are a variety of useful approaches:

o Rule-based methods, perhaps with list of exceptions
o Sequence-to-Sequence methods:

 Hidden Markov Models;

 Neural Networks

Tokenizing: Separating a string into words

Example: Tokenization in the Natural Language Toolkit (NLTK) uses
rules based on regular expressions.

[

>>> text = 'That U.S.A. poster-print costs $12.40...°
>>> pattern = r’’’ (?x) # set flag to allow verbose regexps
([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?7\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
| [JL.,;"’?200:-_°] # these are separate tokens; includes],
>>> nltk.regexp_tokenize(text, pattern)
['That’, ’U.S.A.’, ’poster-print’, ’costs’, '$12.40°, ’...’]

Tokenizing: Separating a string into words

spaCy USAGE MODELS API UNIVERSE O 27089

Industrial-Strength
Example: SpaCy uses a multi-phase Natural Language

approach based on rules and exceptions: Processing

« First, the tokenizer split the text on whitespace similar to the split() function.

* Then the tokenizer checks whether the substring matches the tokenizer exception rules.
For example, “don’t” does not contain whitespace, but should be split into two tokens,
“do” and “n’t”, while “U.K.” should always remain one token.

¢ Next, it checks for a prefix, suffix, or infix in a substring, these include commas, periods,
hyphens, or quotes. If it matches, the substring is split into two tokens.

° import spacy

nlp = spacy.load("en _core web sm")
doc = nlp(text)
tst = [token.text for token in doc]

for k in range(0,len(tst),10):
print(tst[k:k+10])

» ['in', 'our', 'time', '\n\n\n\n\n', 'chapter', 'l', '\n\n\n', 'Everybody', 'was', 'drunk']

[".", 'The', 'whole', 'battery', 'was', 'drunk', 'going', 'along', 'the', 'road']

["in', "the', 'dark', '.', 'We', 'were', 'going', 'to', 'the', 'Champagne']

[".", 'The', 'lieutenant', 'kept', 'riding', 'his', 'horse', 'out', 'into', 'the']

['fields', 'and', 'saying', 'to', 'him', ',', '#', 'I', ''m', 'drunk']

r,', 'r', 'tell', 'you', ',', 'mon', 'vieux', '.', 'Oh', ',"]

['t', 'am', 'so', 'soused', '.', '"', 'We', 'went', 'along', 'the']

['road', 'all', 'night', 'in', 'the', 'dark', 'and', 'the', 'adjutant', ‘'kept']

['riding', 'up', 'alongside', 'my', 'kitchen', 'and', 'saying', ',', '*', 'You']

['must', 'put', 'it', 'out', '.', 'It', 'is', 'dangerous', '.', 'It']

['will', 'be', 'observed', '.', '"', 'We', 'were', 'fifty', 'kilometers',6 'from']

['"the', 'front', 'but', 'the', 'adjutant', 'worried', 'about', 'the', 'fire', 'in']

['my', 'kitchen', '.', 'It', 'was', 'funny', 'going', 'along', 'that', 'road']

['.', 'That', 'was', 'when', 'I', 'was', 'a', 'kitchen', ‘'corporal', '.']
+ Code — + Text

Word Normalization; Stemming and Lemmatization

Normalization is putting words into a standard format
Simple: Make text case-insensitive by converting all to lower case

More complex:

o Misspellings: “In tge beginning.... “
o Abbreviations:
PHD PhD Ph.D Ph.D.
etc. &c
UsS US. USA.
o Hyphenation:
lowercase lower-case
o Miscellaneous:
uhhuh uh-huh

Word Normalization; Stemming and Lemmatization

Stemming: Remove suffixes
likes, liked, likely, liking, likable Stem: like

Naive method: Chop off last part of work (based on list of cases)!

This was not the map we found in Billy Thi wa not the map we found in Billi
Bones’s chest, but an accurate copy, Bone s chest but an accur copi
complete in all things-names and complet in all thing name and height
heights and soundings-with the single and sound with the singl except of the
exception of the red crosses and the red cross and the written note

written notes.

Word Normalization; Stemming and Lemmatization

Stemming: Remove suffixes
likes, liked, likely, liking, likable Stem: like

Better: Multi-phase rule-based systems such as the Porter Stemmer
(available in NLTK):

ATIONAL — ATE (e.g., relational — relate)
ING — € if stem contains vowel (e.g., motoring — motor)

SSES — SS (e.g., grasses — grass)

Word Normalization; Stemming and Lemmatization

Lemmatization: Represent all words by their lemma, the
shared root word (dictionary headword):

" am, are, iS —> be
= car, cars, car’s, cars’ — car
= Spanish quiero (‘I want’), quieres (‘'you want’)

— querer ‘want’

» He is reading detective stories

— He be read detective story

Sentence Segmentation

Segmenting into sentences is based on punctuation.

(1]

I, ? Are mostly unambiguous but period “.” is very ambiguous

»n

= Usually ”.” is a sentence boundary. Especially followed by capital letter. But:
= Abbreviations like Inc. or Dr. Snyder

= Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to classify a period as either (a)

part of the word or (b) a sentence-boundary. Capitalization can help too!

Sentence segmentation can then often be done by rules based on this tokenization.

